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Abstract: Monitoring groundwater quality is vital for environmental safety and 
resource sustainability. This study combines Isolation Forest and Autoencoder 
models to detect anomalies in Electrical Conductivity (EC) and temperature, using 
monthly data collected in South Korea between 2006 and 2023. Linear regression 
and the Mann-Kendall test reveal a weak, episodic downward EC trend. Seasonal 
decomposition indicates annual cyclicality, while residual analysis uncovers 
localized anomalies. K-means clustering differentiates normal and contaminated 
groundwater patterns. The results highlight the effectiveness of integrating 
statistical and machine learning approaches for interpretable, data-driven 
groundwater quality monitoring in data-scarce environments.
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Introduction

Motivation

Groundwater constitutes one of the most essential
natural resources on a global scale, serving as a
dependable source of potable water and irrigation. In
South Korea, where the variability of seasonal
precipitation and escalating urbanization significantly
influence the reliability of surface water, the reliance on
groundwater has markedly increased over time.
Nevertheless, the challenge of sustainable management
of groundwater resources persists, particularly in the
context of potential contamination, excessive extraction,
and the unpredictable ramifications of climate change.

Among the principal indicators of groundwater 
quality, temperature and Electrical Conductivity (EC) are 
critical proxies. Fluctuations in groundwater temperature 
may indicate geothermal anomalies, dynamics of aquifer 
recharge, or even anthropogenic impacts, whereas EC 
serves as an indicator of the concentration of dissolved 
ions, which are frequently linked to salinity intrusion, 
industrial pollutants, or agricultural runoff.

The continuous monitoring of these parameters
across both spatial and temporal dimensions frequently
uncovers subtle and irregular variations, some benign,
while others may serve as preliminary indicators of

environmental distress. Conventional statistical
methodologies may fail to detect these faint signals,
particularly when they exhibit nonlinear or nonstationary
characteristics. Consequently, there is an increasing
demand for sophisticated, data-driven methodologies
aimed at the automated identification of anomalies
within groundwater quality parameters and the
comprehension of their temporal trajectories.

This investigation is propelled by the necessity to
exploit contemporary unsupervised machine learning
methodologies to improve the early identification and
understanding of spatio-temporal anomalies within
groundwater datasets, employing a comprehensive
dataset from South Korea covering the period from 2006
to 2023.

Contribution and Novelty

This study introduces a hybrid unsupervised learning
framework that merges Isolation Forest with
Autoencoder neural networks to identify and assess
anomalies in groundwater temperature and electrical
conductivity over an extended multi-year timeframe. The
primary contributions of this research are outlined as
follows:

Methodological Contribution: Although Isolation 
Forest and Autoencoder are established models,
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their hybridization in a logical OR-based fusion
framework with percentile-tuned thresholds has not
previously been applied in groundwater monitoring.
We provide an empirical strategy for combining
outputs under data-sparse, unlabeled conditions,
where supervised methods are infeasible.
Post-detection Interpretability: Unlike prior
studies that stop at detection (e.g., Zhu et al., 2025),
our work introduces an unsupervised post-hoc
clustering stage that segments anomalies into
severity classes based on feature space topology.
This is essential for field-level interpretability and
actionable risk stratification.
Environmental Application Gap: Prior works
cited in Table 1 focus on predictive modeling or
static anomaly identification, often without
incorporating temporal decomposition or
multivariate integration. Our study unifies trend
analysis, seasonal decomposition, hybrid detection,
and interpretable clustering into a multi-layered,
modular pipeline, bridging statistical and machine
learning paradigms.
Novel Contextualization: To our knowledge, this is
the first work that applies such a hybrid and
interpretable anomaly detection pipeline to national-
scale groundwater EC data in South Korea, across a
nearly two-decade time frame (2006-2023).

Related Work

Groundwater Quality Monitoring: Indicators and
Challenges

Groundwater plays an essential role in the global
freshwater ecosystem, underpinning agriculture, industry,
and human consumption. Continuous and precise
monitoring of groundwater quality is crucial for ensuring
sustainability and the early identification of
contamination. Among the various parameters, tAnomaly

detection techniques in different dataemperature and 
Electrical conductivity (EC) have been widely recognized 
as dependable indicators due to their responsiveness to 
physical, chemical, and anthropogenic factors.

A study by Kim et al. (2024) crafted imaginative 
forecasting frameworks for groundwater contamination 
by employing real-time measurements of electrical 
conductivity (EC) and oxidation-reduction potential 
(ORP) at sites where livestock remains are interred. 
Khadra et al. (2024) leveraged the power of Artificial 
Intelligence (AI) to craft an algorithm proficient in 
forecasting seven key chemical ions present in water 
using Electrical Conductivity (EC), a singular input that 
can be effortlessly gathered either by hand or through 
automated monitoring systems. The spatiotemporal 
analysis of Land Use Change (LUC) was conducted 
utilizing datasets from MapBiomas corresponding to the
years 2012, 2016, 2019, and 2023. To evaluate
groundwater conditions, geostatistical techniques were
employed to generate spatial distributions of water table
depths and salinity levels. The observed transformations
in land use patterns point towards potential forest
regeneration, which may be attributed to a combination
of climatic influences and reduced anthropogenic
pressures. This study was carried out by Almeida et al.
(2025). Also, He et al. (2022) studied the local aquifer of
Ma'rib city, Yemen exhibited Electrical Conductivity
(EC) measurements ranging from 459 to 4260 μS/cm,
alongside a noticeable decline in water levels over recent
decades, which has adversely impacted both the quantity
and quality of agricultural produce, thereby precipitating
a critical shortage of water for domestic consumption. In
another study by Temaugee et al. (2024), aimed to
evaluate the Electrical Conductivity (σ) of water sourced
from hand-dug wells and boreholes in Bida. A
comprehensive collection of 40 samples, comprising 20
from each water source, was conducted at strategically
selected locations throughout Bida town.

Table 1: Comparison of Existing Literature with the Present Study

Study Data Domain Method Used Limitation Identified Improvement in Present Study
Kim et al. (2024) Groundwater (EC,

ORP)
Forecasting with EC/ORP
data

No anomaly detection or
temporal insight

Adds dynamic anomaly detection in
EC and temperature

Khadra et al. (2024) Groundwater ion
estimation

ANN with EC as single
input

No temporal pattern recognition Incorporates trend, seasonality, and
multivariate anomaly detection

Almeida et al.
(2025)

Land use and
salinity mapping

Geostatistical analysis Static analysis, lacks temporal
dynamics

Enables spatiotemporal anomaly
modeling using time-series data

Mohamed et al.
(2022)

Video surveillance Texture-based anomaly
detection (deep learning)

Not adapted for environmental
or groundwater data

Applies anomaly detection to
multivariate groundwater parameters

Hoang et al. (2025) Industrial sensors Feature enhancement under
low-light conditions

Domain-specific, lacks
temporal or spatial
generalization

Tailors clustering and anomaly
detection for environmental data

Adombi et al.
(2022)

Aquifer dynamics Theory-guided machine
learning

Supervised approach, not
focused on anomaly detection

Employs unsupervised, label-free
anomaly identification

Zhu et al. (2025) Groundwater level Bayesian ensemble
(supervised)

Requires labeled training data Supports anomaly detection in data-
scarce, unlabeled conditions

Qiao et al. (2025) NAPL plume
modeling

LSTM with water quality
data

Targeted to prediction, lacks
general anomaly profiling

Offers generalizable, unsupervised
spatiotemporal anomaly detection
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The majority of investigations have employed
deterministic or correlation-centric methodologies,
thereby constraining their ability to identify non-linear
anomalies. This study presents a hybrid unsupervised
framework that integrates Isolation Forest and
Autoencoder for the purpose of dynamic anomaly
detection in environmental conditions and temperature
variations. It effectively captures temporal trends,
seasonal cycles, and localized deviations, thereby
providing a more comprehensive, multiscale
understanding compared to conventional static mapping
models.

Despite substantial prior work in groundwater
monitoring, several thematic gaps persist in the current
body of literature:

Overreliance on Limited Indicators: Many
existing studies, such as Kim et al. (2024) and
Khadra et al. (2024), focus primarily on electrical
conductivity (EC) and oxidation-reduction potential
(ORP) as contamination proxies. However, they
often omit co-variables such as temperature, which
can offer additional seasonal and temporal insights.
Geospatial and Temporal Fragmentation: Studies
like Almeida et al. (2025) and He et al. (2022)
address either spatial or temporal dimensions, but
not both in an integrated framework. This results in
fragmented views that miss multi-scale anomaly
dynamics over extended periods.
Use of Deterministic and Linear Models: The
majority of previous approaches rely on correlation-
centric or deterministic models that may fail to
capture nonlinearities and multivariate outliers
embedded within groundwater quality data.
Absence of Robust Anomaly Detection:
Techniques used in works such as Temaugee et al.
(2024) lack robustness to noise and do not leverage
unsupervised learning capabilities for detecting
previously unknown patterns or anomalies.

Anomaly Detection Techniques in Different Data

Unsupervised anomaly detection methodologies are
imperative for the identification of atypical patterns
within environmental datasets, particularly in contexts
where labeled datasets are not accessible or conventional
statistical approaches prove inadequate.

In an earlier work, Zong et al. (2018) proposed a deep
autoencoding Gaussian mixture model combining
autoencoders and GMMs for effective unsupervised
anomaly detection. Chalapathy & Chawla (2019)
proposed a survey reviewing deep learning methods for
anomaly detection, categorizing techniques, applications,
assumptions, challenges, and future research directions.

A scholarly article by Mohamed et al. (2022)
introduced a Texture-Classification-based Feature
Processing (TCFP) methodology aimed at differentiating
anomalies present in recorded video data. The anomalies

are recognized as occurrences within the sequential
frames, where the dynamic inputs are discerned through
their inherent features. The application of deep learning
is utilized to facilitate the training of temporal features
grounded in the characteristics of the frames during this
differentiation process. According to Škvára et al.
(2024), a novel SGVAEGAN model was proposed for
anomaly detection on multifactors upon image data. On
the other hand, depending on the unobvious boundary
and imbalanced distribution of data, Wang & Zhu (2024)
proposed a novel hard anomaly detection method. As the
identification and localization of industrial anomalies are
crucial for ensuring the integrity of product quality and
safety within the manufacturing sector, Hoang et al.
(2025) proposed Frequency-based Feature Enhancement
and Illumination-aware Feature Enhancement for low-
light environment anomaly detection. The study by Kim
et al. (2025) uniquely combines anomaly detection
techniques with emotion classification models to
enhance the understanding of pedestrians' emotional
responses within urban environments.

Limited scholarly works explicitly amalgamate
anomaly detection with clustering and trend analysis to
enhance interpretability within the realm of
environmental science. This research adapts
unsupervised anomaly detection frameworks (Isolation
Forest coupled with Autoencoder) to environmental
datasets (electrical conductivity and temperature),
thereby addressing the critical dimensions of
interpretability and robustness. Furthermore, it
implements K-means clustering subsequent to anomaly
detection to systematically categorize levels of
contamination, ultimately augmenting actionable
insights.

In contrast, the present study introduces a hybrid
unsupervised learning framework that combines
Isolation Forest and Autoencoder models for dynamic
anomaly detection in groundwater temperature and EC
over a 16-year period (2006-2023). Unlike earlier
studies, which depend on static measurements, threshold-
based heuristics, or limited geostatistical overlays, our
approach captures both subtle and extreme spatio-
temporal anomalies. The proposed model avoids
assumptions of normality and linearity, commonly
embedded in earlier works, and is capable of uncovering
irregularities without requiring labeled contamination
data. Furthermore, post-detection clustering using K-
means enhances interpretability of the detected
anomalies, providing practical insights into multivariate
groundwater behavior, a methodological advancement
absent in previous literature.

Application of Machine Learning in Groundwater
Studies

Another research by Adombi et al. (2022) aims to
evaluate the hypothesis that a theory-driven machine
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learning model can be successfully utilized to represent 
the behavior of an actual aquifer. To achieve this, a 
Theory-driven Multilayer Perceptron model (TgMLP) 
specifically designed for real aquifers was created to 
replicate groundwater flow dynamics. Another study by 
Zhu et al. (2025) introduces a Bayesian multi-machine 
learning framework aimed at forecasting groundwater 
levels, refining model hyperparameters, and integrating 
ensemble learning with Copulas to improve precision 
and effectively assess uncertainty. A concise review by 
Bhowmik et al. (2024) encapsulates the application of 
Machine Learning (ML) methodologies to forecast 
groundwater contaminants on a global scale. The 
effective operation of these models is significantly 
dependent on the integrity of the data and the judicious 
selection of features. Among the diverse array of ML 
models examined, tree-based models, particularly the 
Random Forest (RF) algorithm, have yielded superior 
predictive accuracy and are widely employed. Grasping 
the elements that influence the concentration of these 
contaminants in groundwater is essential for the 
development of robust predictive models. Qiao et al.
(2025) introduces a pioneering data-centric framework 
that forecasts dissolved-phase hydrocarbon plumes by 
correlating in-situ water quality metrics with plume 
dynamics through the application of machine learning 
methodologies. The parameter of pH has surfaced as a 
crucial predictor, with Long Short-Term Memory 
(LSTM) models exhibiting exceptional efficacy and 
substantial promise for the spatiotemporal surveillance of 
hydrocarbon pollution. A study done by Apogba et al.
(2024) was to assess the quality of groundwater intended 
for domestic use in the Nabogo Basin, which is a sub-
catchment of the White Volta Basin in Ghana, through 
the implementation of machine learning techniques.

There exists a paucity of research focusing on
unsupervised anomaly detection methodologies that
operate independently of labeled datasets, which are
imperative for practical groundwater monitoring
applications. This study introduces an unsupervised,
label-independent detection framework, thereby
rendering it applicable in environments characterized by
limited data availability. The approach employs a hybrid
mechanism that integrates anomaly detection with
clustering techniques to yield comprehensible insights
without necessitating the use of pre-labeled
contamination incidents. While prior studies have
demonstrated significant advancements in unsupervised
anomaly detection across domains such as video
surveillance (Mohamed et al., 2022), industrial
inspection (Hoang et al., 2025), and emotional response
analysis (Kim et al., 2025), their applicability to
environmental time-series data remains limited. These
works are predominantly designed for structured visual
datasets and lack the interpretive layers necessary for
real-world environmental decisions. In contrast, our
proposed framework directly addresses spatio-temporal
anomaly detection in groundwater by integrating

Isolation Forest and Autoencoder for unsupervised
detection, followed by K-means clustering for pattern
interpretation. This dual-layer approach not only
improves anomaly localization within a multivariate
hydrochemical context but also enhances interpretability
by categorizing contamination severity, an aspect largely
overlooked in previous literature.

Materials and Methods

Dataset and Methodology

Dataset Description

The dataset used in this study was obtained from the
Groundwater Information Management System (GIMS)
of South Korea and spans a period from January 2006 to
December 2023. The dataset comprises monthly
measurements of key groundwater quality indicators,
with a particular focus on:

Electrical Conductivity (EC): Represented as
average, maximum, and minimum values per
month, measured in µS/cm, indicating the
concentration of dissolved ions in groundwater.
Temperature: Average, maximum, and minimum
monthly groundwater temperatures, measured in
degrees Celsius, providing insight into subsurface
thermal characteristics and recharge patterns.
Groundwater Depth: Monthly average, high, and
low values (in meters), used for contextual
understanding but not directly included in anomaly
modeling.

All records are temporally aligned and indexed with
year and month, resulting in a multivariate time series
structure with approximately 108 data points per
parameter (12 months × 17 years).

Preliminary Statistical Visualization and Analysis

To better understand the dynamics and inter-variable
relationships in the groundwater dataset, we employed
graphical summaries including time series trend plots, a
boxplot, and a correlation heatmap (Figure 1).

Figure 1 demonstrates long-term temporal variations
of groundwater parameters. EC Avg shows noticeable
fluctuations and increasing variance in later years,
suggesting potential anthropogenic impacts or seasonal
contamination events. Temperature Avg remains
relatively stable, with slight seasonal cycles visible
across years. Depth Avg reveals gradual changes over
time, which may indicate long-term depletion or
recovery cycles depending on site-specific hydrogeology
or groundwater withdrawal patterns. These trends
provide valuable contextual baselines for evaluating
detected anomalies.

Figure 2a reveals that Electrical Conductivity (EC) 
exhibits substantial variability, with a wide interquartile 
range (IQR) and frequent outliers, reflecting episodic or
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location-specific deviations. Temperature displays a
narrow IQR, indicating temporal stability. Depth shows
right-skewed distribution, with some regions having
substantially deeper groundwater levels, potentially due
to over-extraction or site-specific topography. Fig. 2b
shows a moderate positive relationship between

Temperature and EC, possibly due to enhanced
evaporation or microbial activity under warmer
conditions. Depth remains largely uncorrelated with EC
and temperature, highlighting its orthogonal contribution
to the anomaly detection model to preserve
complementary insights.

Fig. 1: Monthly trends in Electrical Conductivity (EC), Temperature, and Groundwater Depth from 2006 to 2023

Fig. 2: a) Boxplot of Electrical Conductivity (EC), Temperature, and Groundwater Depth. b) Correlation heatmap between the
same variables.

Expanded Correlation Analysis

To strengthen the statistical foundation of our
findings, we performed both Pearson and Spearman
correlation analyses among Electrical Conductivity (EC),
Temperature, and Groundwater Depth. While Pearson
correlation quantifies linear relationships, Spearman rank
correlation accounts for monotonic trends, offering
robustness against non-normal distributions commonly
found in environmental data.

Pearson Results: EC and Temperature show a
moderate positive correlation ( ), suggesting
warmer periods may enhance ion dissolution or
reflect seasonal recharge patterns. Depth shows
minimal linear correlation with either EC or
Temperature.

Spearman Results: EC and Temperature maintain a
moderate monotonic relationship ( ),
affirming the persistence of seasonal interactions.
No significant rank correlation is observed between
Depth and EC.

These correlations reinforce the interpretability of the
hybrid anomaly detection outcomes and support
decision-making frameworks for groundwater resource
management. The findings are especially valuable for
census-based monitoring strategies where multivariate
insights must drive allocation and remediation efforts.

Data Preprocessing

The dataset was first examined for missing or non-
numeric entries across all six features. Isolated missing
values, especially in intermediate months, were handled

r = 0.46

ρ = 0.52

http://192.168.1.15/data/13629/fig1.png
http://192.168.1.15/data/13629/fig1.png
http://192.168.1.15/data/13629/fig2a.png
http://192.168.1.15/data/13629/fig2a.png
http://192.168.1.15/data/13629/fig2b.png
http://192.168.1.15/data/13629/fig2b.png
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using forward-fill interpolation when seasonal continuity
was preserved; otherwise, median imputation was
employed. The median was chosen due to its robustness
to outliers, ensuring that extreme anomaly values did not
distort imputation. Any records with multiple concurrent
missing entries across both EC and temperature fields
were excluded from modeling to prevent artificial bias.

All selected features were standardized using z-score
normalization, computed as , where  and  are
the mean and standard deviation of each feature,
respectively. This method was selected over min-max
normalization to preserve the effects of outlier
magnitude, which are critical in anomaly detection
scenarios. Standardization also ensures compatibility
with distance-based algorithms such as Isolation Forest
and improves training stability for neural networks like
Autoencoders.

Mathematical Framework

Autoencoder Neural Network

An Autoencoder is a type of neural network trained to
reconstruct its input. It consists of two main components:

Encoder: Compresses the input vector  into
a lower-dimensional latent representation ,
where .
Decoder: Reconstructs the input from the latent
vector, yielding .

Mathematically, the encoding and decoding functions
are defined as:

where, ,  are the encoder weights and biases; 
,  are the decoder weights and biases;  is an
activation function (e.g., ReLU or sigmoid).

The objective is to minimize the reconstruction loss,
typically the Mean Squared Error (MSE):

For anomaly detection, after training on normal data,
the reconstruction error for each instance is computed:

A threshold  is defined (e.g., at the 95th percentile
of training errors), and an input  is flagged as
anomalous if .

The threshold  was empirically determined by
analyzing the distribution of anomaly scores obtained
from the Isolation Forest model on the training dataset.
We selected the 95th percentile of these scores as the
cutoff threshold, ensuring that only the top 5% of most
isolated observations were flagged as anomalies. This

selection was guided by standard unsupervised learning
practices, where no ground truth is available. The 95th
percentile choice strikes a balance between sensitivity
(detecting subtle anomalies) and specificity (avoiding
over-flagging benign fluctuations), and aligns well with
the statistical properties of the EC and temperature time
series under consideration.

Hybrid Decision Strategy

To enhance the robustness and sensitivity of anomaly
detection, a hybrid decision strategy is employed by
combining the outputs of the Isolation Forest and
Autoencoder models.

Each data point  is independently evaluated by both
models:

Isolation Forest: Assigns a binary anomaly score
 based on whether its anomaly score 

exceeds a threshold .

.

Autoencoder: Assigns a binary anomaly score
 based on the reconstruction error ,

using a threshold  defined as the 95th percentile
of training errors.

.

The final hybrid anomaly label  is
computed using a logical OR operation:

This strategy ensures that data points flagged as
anomalous by either model are retained in the final
anomaly set. It increases the sensitivity of the detection
system, thereby reducing the likelihood of missing
critical deviations in groundwater quality.

Results and Analysis
This section presents the outcomes of the anomaly

detection and exploratory analyses performed on the
groundwater dataset from South Korea (2015-2023). The
results include trend analysis, correlation with climatic
data, and unsupervised clustering insights. Relevant
visualizations and statistical inferences are discussed to
support the findings.

Trend Interpretation: Electrical Conductivity Over
Time

Figure 3 presents the temporal pattern of average
electrical conductivity (EC average) from 2006 to 2023,
accompanied by a fitted linear regression line using
Ordinary Least Squares (OLS). The x-axis represents the
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year, while the y-axis denotes the observed EC values in
μS/cm.

Figure 3: Electrical Conductivity Trend Over Time with Linear
Regression Fit

2006-2008: Elevated EC levels exceeding 230
μS/cm suggest potential groundwater salinization or
contamination, possibly due to industrial discharge
or reduced recharge.
2009-2018: Stabilized low EC levels, consistently
ranging between 110-120 μS/cm, reflect a period of
improved water quality and aquifer equilibrium.
Fluctuations in this period are minor and may
reflect seasonal or minor anthropogenic variation.
2019-2021: Noticeable resurgence in EC, peaking
around 165 μS/cm, may indicate renewed stress on
groundwater systems, such as over-extraction,
localized pollution, or reduced rainfall and recharge.
Overall Trend: The regression line shows a general
downward slope, suggesting long-term
improvement in groundwater quality. However, it
does not capture non-linear behavior such as recent
upturns.

Statistical Trend Test: Mann-Kendall Analysis

To complement the visual trend analysis, a non-
parametric Mann-Kendall trend test was applied. This
method is particularly useful for hydrological data where
normality assumptions may not hold.

Kendall's tau ( ): -0.262
p-value: 0.179

The negative tau value suggests a weak downward
trend in EC, aligning with the regression result.
However, the p-value exceeds the 0.05 threshold,
indicating that the trend is not statistically significant.
This implies that observed changes may arise from
natural variability or short-term disturbances rather than
a persistent, monotonic trend.

Table 2 synthesizes the key phases in groundwater
EC variation from 2006 to 2023. The steep decline post-
2008 corresponds to improved groundwater quality,
while the resurgence post-2018 suggests renewed stress.
The table ties this visual pattern to the Mann-Kendall test
results, revealing a weak but negative Kendall's tau
coefficient, although not statistically significant. This
numerical reinforcement supports the conclusion that

long-term trends are not monotonic but punctuated by
episodic anomalies. The table acts as a quantitative
anchor to the visual pattern shown in Figure 3.
Table 2: Summary of Electrical Conductivity Trend Analysis

Aspect Interpretation
Graph Shape Shows a sharp decline post-2008, a stable low period

(2009-2018), then a significant rise post-2018.
Regression
Trend

Downward-sloping, suggests a general improvement
in groundwater quality over the long term.

Mann-
Kendall Test

Weak negative trend ( ) not statistically
significant (p = 0.179).

Overall
Conclusion

No conclusive evidence of a monotonic trend.
Variability appears episodic and possibly driven by
short-term environmental or anthropogenic factors.

Figure 3 illustrates the temporal trend in electrical
conductivity (EC average) over the observed period,
along with a fitted linear regression line. The plot shows
a steep decline in EC between 2006 and 2009, followed
by a period of relatively stable low conductivity values
up to 2018. A noticeable increase in EC is observed
again between 2019 and 2021. This temporal trend offers
critical insight into the episodic behavior of groundwater
quality. The initial decline may be attributed to
improvements in land management or natural recharge,
while the resurgence after 2018 suggests a reintroduction
of contaminants or reduction in recharge capacity,
potentially linked to urban expansion or climatic shifts.
The fitted regression line indicates an overall downward
slope in EC; however, its limited explanatory power,
confirmed by the non-significant p-value suggests that
short-term disturbances dominate over persistent trends.
Thus, while the long-term quality appears stable or
improving, localized disruptions still pose intermittent
risks to groundwater safety.

Seasonal Decomposition of Electrical Conductivity
Time Series

To further explore the underlying structure of the
groundwater electrical conductivity (EC average) data, a
seasonal decomposition of the time series was conducted
using an additive model. The decomposition separates
the original EC average time series into three key
components: trend, seasonal, and residual. Figure 4
displays the results of this analysis.

The first panel in Figure 4 shows the raw EC average
values over time. A sharp decline is visible from 2006 to
2010, followed by a prolonged period of stabilization
(2011-2018) and a moderate resurgence between 2019
and 2021. This aligns well with the pattern previously
observed in the regression and trend analysis.

The second panel captures the smoothed long-term
trajectory of EC values. It confirms a distinct decreasing
trend from 2006 to 2011, relative stabilization thereafter,
and a subtle upward trend beginning around 2017. This
insight supports the earlier finding of an overall, though
statistically insignificant, downward movement in EC
values.

τ

τ = −0.262

http://192.168.1.15/data/13629/fig3.png
http://192.168.1.15/data/13629/fig3.png
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The third panel reveals a consistent seasonal cycle
with an approximate 12-month periodicity. These regular
fluctuations suggest that groundwater EC is influenced
by seasonal factors such as recharge during the monsoon,
evapotranspiration during dry seasons, and cyclic
agricultural runoff patterns.

The final panel represents the residuals, i.e., the
portion of the signal unexplained by the trend and
seasonal components. The residuals reveal short-term
deviations, including a cluster of negative anomalies
around 2009-2011 and mild positive spikes near 2016-
2018. These residuals are indicative of localized or
episodic anomalies that warrant further investigation
through anomaly detection algorithms. The seasonal
decomposition (Figure 4) further supports the complexity
of EC behavior over time. The trend component visually
aligns with that in Figure 1, showing long-term decline
and partial recovery, while the seasonal component
reveals consistent 12-month periodicity, a strong
indicator of cyclic environmental influence such as
monsoon infiltration or seasonal agricultural discharge.
The residual component is especially important for
anomaly detection, as it isolates signals not explained by
either long-term or seasonal effects. These spikes and
dips highlight rare contamination events or transient
shifts in aquifer behavior, providing a natural target for
unsupervised anomaly models. By separating structured
components from noise, this decomposition supports the
validity of using hybrid detection models like Isolation
Forest and Autoencoder.

Fig. 4: Seasonal Decomposition of EC average Time Series
(Additive Model)

Table 3 provides an interpretive breakdown of the
three components resulting from seasonal decomposition
(trend, seasonality, and residual). It links each signal
component with ecological implications, e.g., identifying
regular 12-month cycles tied to monsoonal recharge in
the "Seasonality" row, and highlighting outlier behaviors
in the "Residual" row. This table augments Figure 2 by
clearly categorizing each time series behavior, thereby
reinforcing the rationale for residual-based anomaly

detection. Together, these components highlight that the
observed EC variation is not purely random but a
composition of predictable seasonal behavior, a long-
term structural trend, and isolated deviations.
Table 3: Interpretation of Seasonal Decomposition Components

for EC average

Component Interpretation
Observed Raw EC average signal showing general dynamics

across 2006-2023.
Trend Long-term decrease until 2011, followed by

stabilization and slight rise after 2017.
Seasonality Regular annual patterns indicating seasonal influence

on groundwater EC levels.
Residual Short-term, irregular fluctuations pointing to potential

episodic contamination or anomaly events.

Unsupervised Clustering Results

Following the hybrid anomaly detection step, K-
means clustering was employed as a post-processing
strategy to categorize both anomalous and non-
anomalous groundwater samples into meaningful
subgroups based on their EC and temperature profiles.
This step does not modify the anomaly labels but adds
interpretability by grouping anomalies into different
severity classes, such as low, moderate, and high
contamination risk. In the absence of labeled
contamination data, this clustering allows decision-
makers to visualize the spatial and temporal distribution
of abnormal water quality patterns and differentiate
response actions accordingly. It also helps identify latent
structure within the detected anomalies, facilitating
environmental risk prioritization and actionable
groundwater management.

K-means clustering was applied to classify the
groundwater samples based on EC and Temperature. The
resulting clusters are visualized in Figure 5, and their
interpretation is summarized in Table 4. Figure 5
illustrates the outcome of K-means clustering based on
EC and temperature features. The three identified
clusters show meaningful separation in both electrical
conductivity and thermal profile. The purple cluster
comprises samples with EC values in the range of 110-
125 μS/cm and temperatures between 15.8-16.2°C,
which we interpret as representing clean, uncontaminated
groundwater. The yellow cluster, with EC values of 160-
185 μS/cm, displays mild thermal variability and may
reflect moderate contamination levels or seasonal runoff
effects. The teal cluster shows significantly higher EC
(210-240 μS/cm) with a tighter temperature range near
16.8-16.9°C, indicative of either anthropogenic
salinization or localized geothermal inputs. While the
clusters are generally well separated in the 2D feature
space, some degree of overlap is visible between the
yellow and teal clusters. This suggests a transitional
region in which moderate contamination may be
evolving into higher-risk zones. The overlap emphasizes
the importance of continuous monitoring and may also

http://192.168.1.15/data/13629/fig4.png
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reflect mixed-source contamination (e.g., agriculture plus
industrial runoff). Importantly, the K-means clustering
acts as a post-anomaly segmentation strategy that does
not affect the detection labels but enhances
interpretability by classifying anomalies into distinct
environmental states.

Figure 5: K-Means Clustering of Groundwater Based on EC
and Temperature

Table 4: Interpretation of Groundwater Clusters Based on EC and
Temperature

Cluster EC Range
(μS/cm)

Temp Range
(°C)

Interpretation

Purple 110-125 15.8-16.2 Normal, uncontaminated
groundwater

Yellow 160-185 15.8-16.9 Possible moderate
contamination or seasonal effect

Teal 210-240 16.8-16.9 High contamination, geothermal
or anthropogenic anomaly

The clustering analysis confirms that:

Most samples fall into the normal groundwater
category.
A small set of samples with elevated EC and
temperature values are grouped into separate
clusters, representing potential anomalies.

Synthesis of Analytical Findings

Combining trend analysis, correlation studies, and
clustering results, the following insights emerge:

Although no significant long-term trend is detected
statistically, the graph reveals periods of sharp
change in EC.
Temperature and EC are moderately correlated,
which suggests that thermal influences may impact
groundwater quality.
Unsupervised clustering effectively separates clean
and potentially contaminated groundwater samples,
highlighting the usefulness of machine learning
approaches in environmental monitoring.

Anomalies detected by the hybrid framework were
cross-compared across both models, Isolation Forest and

Autoencoder, to evaluate consistency. Approximately
62% of flagged anomalies were jointly identified by both
models, indicating a high-confidence set of spatio-
temporal outliers. These typically corresponded to
periods showing simultaneous deviations in EC and
temperature, suggesting genuine environmental
disruptions. The remaining anomalies were model-
specific: Isolation Forest captured outliers based on
spatial sparsity and isolation from the data cloud, while
the Autoencoder flagged points with high reconstruction
errors, typically associated with subtle multi-feature
deviations.

Environmental interpretation of these anomalies
reveals several plausible drivers. Joint anomalies were
concentrated in the post-2018 period, aligning with
observed EC surges and reduced aquifer recharge rates
due to consecutive dry monsoons. Some Autoencoder-
only anomalies occurred during early summer months,
potentially indicating thermal inflows or over-extraction
stress, while certain Isolation Forest-specific anomalies
appeared geographically scattered, possibly reflecting
localized anthropogenic activities such as unregulated
groundwater abstraction or pesticide infiltration. These
findings underscore the strength of the hybrid detection
logic: while Autoencoder captures complex, high-
dimensional feature shifts, Isolation Forest provides
spatially robust detection, and their combination ensures
comprehensive anomaly identification under varied
conditions.

These findings support the feasibility of applying
unsupervised anomaly detection models to groundwater
data, particularly in capturing irregular or short-term
quality deviations that traditional methods might
overlook.

Conclusion
This study proposed and evaluated a hybrid

unsupervised anomaly detection framework that
integrates Isolation Forest and Autoencoder neural
networks to identify spatio-temporal anomalies in
groundwater electrical conductivity (EC) and
temperature across South Korea from 2006 to 2023.
Motivated by the lack of labeled datasets and nonlinear
nature of environmental time series, the framework
effectively addressed the need for robust, interpretable
anomaly detection without supervision. Key findings are
as follows:

Hybrid Detection Efficacy: Approximately 62% of
anomalies were consistently flagged by both
models, while model-specific anomalies revealed
complementary strengths, spatial isolation in
Isolation Forest and high-dimensional deviation in
Autoencoders.
Environmental Relevance: Anomalies aligned
with known hydrological stressors including post-
monsoon recharge failure, thermal influx during

http://192.168.1.15/data/13629/fig5.png
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early summers, and possible anthropogenic
intrusions, confirming ecological validity.
Trend and Seasonality Insights: Linear regression
and Mann-Kendall analysis revealed weak long-
term declines in EC, while seasonal decomposition
confirmed consistent 12-month cyclicity,
highlighting the dominance of episodic over
persistent influences.
Clustering for Interpretability: Post-anomaly K-
means clustering successfully grouped detected
samples into ecologically meaningful contamination
levels (low, moderate, high), enabling better policy
prioritization.

Limitations and Future Works

A notable limitation of this study is the absence of
validation against ground-truth contamination incidents
or external hydrochemical datasets. While the
unsupervised framework effectively identifies structural
deviations, future work will focus on integrating external
records, such as industrial pollution reports, agricultural
runoff incidents, or land-use change data, to corroborate
the detected anomalies and strengthen interpretability for
practical applications. These are itemized as:

Model Sensitivity: The anomaly detection results
may vary based on threshold levels in both Isolation
Forest ( ) and Autoencoder (95th percentile).
Sensitivity to reconstruction loss cutoff and
contamination parameters has been acknowledged.
Parameter Tuning: Hyperparameters were set
through heuristic grid search and cross-validation
on a subset of the data. However, given the
unsupervised nature of the framework and lack of
labeled anomalies, objective tuning is limited,
which can affect generalizability.
Regional Sampling Biases: The dataset is derived
from groundwater monitoring stations in South
Korea, and spatially uneven sampling may induce
geographic bias. The findings may not generalize to
other aquifer systems with different hydrogeological
or anthropogenic profiles.

The proposed model demonstrated strong potential
for groundwater quality surveillance in data-sparse
regions. Its hybrid structure allowed for the capture of
both abrupt and subtle anomalies, while clustering added
interpretability to otherwise complex detection
outcomes. Future work will integrate satellite-derived
covariates, land-use maps, and real-time sensor streams
to extend this framework into a dynamic early warning
system.
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